1 Weak *-topology

N を norm 空間とすると、そのには norm から誘導された自然な位相が入る。これにより、 $f:N\longrightarrow\mathbb{C}$ が bounded であること、連続であること、一様連続であることが同値だったわけだが、通常の距離空間では連続と一様連続が同値などとは考えられない。そこで、有界と連続の同値だけを取り扱う弱い位相を N に考える。

Definition 1.1. N を norm 空間とし、 N^* を bounded な関数からなる norm 空間 (operator norm により) とする。

- N の norm から定まる N 上の位相を strong topology と呼ぶ。
- 任意の $f \in N^*$ に対し、f が連続となるような N 上の最弱の位相を weak topology という。 つまり、N の開集合は、 $f \in N^*$ と $\mathbb C$ の open set U を用いて、 $f^{-1}(U)$ と表される。
- N* も operator norm により、norm 空間となるため、strong topology、weak topology を考えることができる、。
- N^* 上の $weak\ topology$ は $\varphi\in N^{**}$ が連続となる最弱位相であるが、一般的に $N\subset N^{**}$ と見なせるため、N の部分だけ連続になるような最弱の位相を N^* 上の $weak\ *-topology$ と呼ぶ。

Remark 1.2. $ev: N \longrightarrow N^{**}$ を ex(x)(f) = f(x) で定義すれば、

$$Ker(ev) = \{x \in N | f(x) = 0, \forall f \in N^*\} = 0$$

となることは vector 空間の一般論である。これにより、 $N\subset N^{**}$ と見なしているわけであるが、今 N^* 上の weak *-topology とは、任意の $x\in N$ に対し、 $ev(x)\in N^{**}$ が連続となる最弱位相である。つまり、 N^* の開集合は、この写像での $\mathbb C$ の openset の逆像だから、 $f\in N^*$ に対し、その開近傍は、 $\varepsilon>0$ 、 $x\in X$ を用いて、

$$W(f; x, \varepsilon) := ev(x)^{-1}(U_{\varepsilon}(f(x))) = \{ g \in N^* \mid |g(x) - f(x)| < \varepsilon \}$$

と表せる。よって、 $\{f_n\}_{n\in\mathbb{N}}\subset N^*$ で、任意の $x\in N$ に対し、 $\lim_{n\to\infty}f_n(x)={}^{\exists}f(x)$ in $\mathbb C$ であることと、weak *-topology において、 $\lim_{n\to\infty}f_n=f$ であることは同値となる。このことから、weak *-topology のことを各点収束位相と呼ぶこともある。

Proposition 1.3. N* は weak *-topology により Hausdorff である。

Proof. $f,g\in N^*$ で、 $f\neq g$ とすると、 $x\in N$ で、 $f(x)\neq g(x)$ となるものが存在する。今、 $\mathbb C$ は Hausdorff だから、 $\varepsilon,\delta>0$ で、 $U_\varepsilon(f(x))\cap U_\delta(g(x))=\phi$ となるものが取れる。これより、その逆像を考えれば、

$$W(f; x, \varepsilon) \cap W(q; x, \delta) = \phi$$

Definition 1.4. $B_N = \{x \in N \mid ||x|| \le 1\}$ とおき、N の unit ball と呼ぶ。これから扱うのは N^* の unit ball のみなので、 $B = B_{N^*}$ と書く。

通常、ユークリッド空間や距離空間などでは unit ball は compact と相場が決まっている。しかし、 N^* においてはその位相の取り方により、compact 性が大きく左右される。以下のことが知られている。

- *B* が compact in strong topology ← N はベクトル空間として有限次元
- B $\not N$ compact in weak topology $\iff ev : N \cong N^{**}$
- Bがcompact in weak *-topology ⇔ いつでも

今回用いるのは最後だけなので、それを示す。

Theorem 1.5. B that compact in weak *-topology

 $Proof. \ x \in N$ に対し、 $D_x = \{z \in \mathbb{C} \mid |z| \leq ||x||\}$ は compact in \mathbb{C} である。

$$D: \prod D_x \subset \prod_{x \in N} \mathbb{C}$$

とおくと、Tychonoff の定理からこれも compact である。今、 $j:B\longrightarrow D$ が、 $j(f)_x=f(x)$ により定義される。明らかに単射である。また各、 $x\in N$ に対し、 $j(-)_x=ev(x)$ なので、これは連続でしかも埋め込みになっている。つまり、 $B\cong j(B)\subset D$ で、B は compact set の部分空間と見なせるので、あとは j(B) が閉集合であればよい。今、 $f\in\overline{j(B)}$ をとると、とりあえず $f\in\prod_{x\in N}\mathbb{C}=\mathrm{Map}(N,\mathbb{C})$ である。 $\{f_n\}_{n\in\mathbb{N}}\subset j(B)$ で、 $\lim_{n\to\infty}f_n=f$ となるものが取れる。今、 f_n は線形で各点収束位相なのだから、

$$f(x+y) = (\lim_{n \to \infty} f_n)(x+y) = \lim_{n \to \infty} (f_n(x+y)) = \lim_{n \to \infty} (f_n(x) + f_n(y)) = f(x) + f(y)$$

で f も線形になる。また、D は閉集合でもあるから、 $\overline{j(B)} \subset D$ より、任意の $x \in N$ に対し、 $|f(x)| \leq ||x||$ 。つまり、 $||f|| \leq 1$ となり、 $f \in j(B)$ 。

Corollary 1.6. B は compact Hausdorff 空間 in N^* with weak *-topology である。

Definition 1.7. A を Banach algebra とし、maximal ideal と complex homomorphism を同一視して、 $M_A \subset A^*$ という relative weak *-topology を考える。

Theorem 1.8. M_A は compact Hausdorff である。

Proof. f を complex homomorphism とすると、||f||=1 だったので、 $M_A\subset B$ である。よって、後は M_A が closed in B であることを示せばよい。今、 $f\in\overline{M_A}$ に対し、 $f_n\to f$ という M_A の収束列が考えられるが、

$$f(xy) = \lim_{n \to \infty} f_n(xy) = \lim_{n \to \infty} f_n(x) f_n(y) = f(x) f(y)$$

より、積を保つことがわかる。しかし、f=0である可能性もある。よって、

$$\overline{M_A} = M_A \cup \{0\} \subset B$$

であり、これが compact Hausdorff であることがわかる。今、A は単位元を持ち、complex homomorphism はそれを保つため、

$$M_A = \overline{M_A} \cap ev(e)^{-1}(1)$$

となり、 M_A は closed となる。

注:A が単位元を持たない場合には、 $M_A=\overline{M_A}-\{0\}$ なので、 M_A は locally compact Hausdorff までしか言えない。